给点提示就可以自动续写故事NLP最强文本生成模型GPT-3来了网友亲测好用

写作应该是各行各业,各种职业都会用到的基础技能。

虽为基础技能,但要做好却不难简单,想必你一定经历过深夜论文没灵感、合作方案写不出来这些类似的痛苦。如果这个时候能有一个什么都懂的全能大神指点迷津,或者直接完成,那简直再好不过了!

最近一位Twitter网友在体验了一款AI神器后,发现愿望竟然真的实现了!

“百科全书式”写作助手

这款AI神器正是Open AI开发的GPT-3自然语言处理模型。简单来说,GPT-3是一款AI文本生成器,它可以根据上文提示,自动补齐下文。官方说法是,这款GPT-3涵盖了1750亿个参数,远超GPT-2和其他AI文本生成模型,达到了目前的最佳SOTA,而且其写作水平能够与人类媲美。

但是实际效果如何,咱谁也没用过。可能是出于对产品的自信,两个月前,OpenAI将这款耗费了1200万美元的商用GPT-3模型,对外开源了,现在人人皆可拿来作为自己的写作助手。

最近一位名为Delian的网友在体验完之后,忍不住在Twitter分享了令他难以置信的使用效果。Delian是家风投公司创始人,他希望GPT-3能在“如何召开有效的董事会会议?”的问题上给出一些建议,因此,他针对这个问题,在GPT-3中输入了上文:

内容大意是:公司创始人前期打造一支高质量的董事会成员对于公司初期发展至关重要。而大多说创始人没有意识到这一点。他建议公司在完成A轮融资后就可以开始招募董事会成员,而且招募对象一定好涵盖公司所在领域的各个方向的专家。另外,他还举了一个实例进行了论证了这个观点。

可以看出,上文内容属于商业运营和投资范畴,若非专业人员很难给出相应的回应。

但是,接下来GTP-3生成的下文让他非常满意。(话题涉及主观看法,暂不论对错)

以下是翻译内容:

CommonCrawl数据是从2016年到2019年,每个月的CommonCrawl的41个分片中下载的,构成了过滤前的45TB压缩明文和过滤后的570GB,大致相当于4000亿字节。

请注意,在训练过程中,并非按大小对数据集进行采样,而是较高质量的数据集采样频率更高,因此,在训练过程中CommonCrawl和Books2数据集采样的次数少于一次,而其他数据集则采样了2 -3次。这本质上是接受了少量的过度拟合,换取了更高质量的训练数据。

因此,基于超大模型和与数据库的GPT-3在预训练阶段能够表现出极好的性能。

存在一定的局限性

不过,从此前的测试中,我们也可以看出GPT-3的文本生成还是存在一些局限性的。具体我们可以从QA问答中来看一下。对于常识性性问题,GPT-3还是非常擅长的。如,

GPT-3自身的学习经验主要是从网上抓取,因此在回答一些常识性问题时,它可以从网上找到准确的对应答案。但在处理对于一些“不言而喻”的问题时,它就可以出现错误,比如下文:

Q:烤面包机和铅笔哪一个较重?

A:铅笔比烤面包机重。

虽然在这些问题上存在缺陷,不过,GPT-2在处理一些逻辑性问题,或者阅历理解任务时,几乎可以达到人类的水平。因此,在很多方面可以作为人类很好的辅助工具。

相关链接:雷锋网雷锋网雷锋网

论文地址:https://arxiv.org/abs/2005.14165

https://delian.substack.com/p/quick-thoughts-on-gpt3

https://lambdalabs.com/blog/demystifying-gpt-3/